Search the KHIT Blog

Monday, April 2, 2018

Sleep, health, and IT


As I noted my my prior post, I'm onto yet another intriguing book.


Heard the author interviewed yesterday on NPR's "Hidden Brain" while taking my departing son to the airport.

I have had episodic dysfunctional sleep for more than 15 years (Mr. 'Busy Brain"). Now, as we deal with the end stage of my daughter's Stage IV cancer, the unrelenting daily stress (complicated by my looming surgical aortic stenosis px anxiety) makes it quite difficult to consistently get a good night's sleep.
We now have a President who brags about only getting four hours sleep a night. Check the date/time stamps on his tweets. I'm not sure he even gets four hours. Do you find that comforting? Not me.
This book has gotta go to the top of my burgeoning pile (at least six books in various stages of completion now).

Some excerpts:
1. TO SLEEP

Do you think you got enough sleep this past week? Can you recall the last time you woke up without an alarm clock feeling refreshed, not needing caffeine? If the answer to either of these questions is “no,” you are not alone. Two-thirds of adults throughout all developed nations fail to obtain the recommended eight hours of nightly sleep.

I doubt you are surprised by this fact, but you may be surprised by the consequences. Routinely sleeping less than six or seven hours a night demolishes your immune system, more than doubling your risk of cancer. Insufficient sleep is a key lifestyle factor determining whether or not you will develop Alzheimer’s disease. Inadequate sleep—even moderate reductions for just one week—disrupts blood sugar levels so profoundly that you would be classified as pre-diabetic. Short sleeping increases the likelihood of your coronary arteries becoming blocked and brittle, setting you on a path toward cardiovascular disease, stroke, and congestive heart failure. Fitting Charlotte Brontë’s prophetic wisdom that “a ruffled mind makes a restless pillow,” sleep disruption further contributes to all major psychiatric conditions, including depression, anxiety, and suicidality.

Perhaps you have also noticed a desire to eat more when you’re tired? This is no coincidence. Too little sleep swells concentrations of a hormone that makes you feel hungry while suppressing a companion hormone that otherwise signals food satisfaction. Despite being full, you still want to eat more. It’s a proven recipe for weight gain in sleep-deficient adults and children alike. Worse, should you attempt to diet but don’t get enough sleep while doing so, it is futile, since most of the weight you lose will come from lean body mass, not fat.

Add the above health consequences up, and a proven link becomes easier to accept: the shorter your sleep, the shorter your life span. The old maxim “I’ll sleep when I’m dead” is therefore unfortunate. Adopt this mind-set, and you will be dead sooner and the quality of that (shorter) life will be worse. The elastic band of sleep deprivation can stretch only so far before it snaps…

Scientists such as myself have even started lobbying doctors to start “prescribing” sleep. As medical advice goes, it’s perhaps the most painless and enjoyable to follow. Do not, however, mistake this as a plea to doctors to start prescribing more sleeping pills—quite the opposite, in fact, considering the alarming evidence surrounding the deleterious health consequences of these drugs…

Astonishing, but until very recently, this was reality: doctors and scientists could not give you a consistent or complete answer as to why we sleep. Consider that we have known the functions of the three other basic drives in life—to eat, to drink, and to reproduce—for many tens if not hundreds of years now. Yet the fourth main biological drive, common across the entire animal kingdom—the drive to sleep—has continued to elude science for millennia.

Addressing the question of why we sleep from an evolutionary perspective only compounds the mystery. No matter what vantage point you take, sleep would appear to be the most foolish of biological phenomena. When you are asleep, you cannot gather food. You cannot socialize. You cannot find a mate and reproduce. You cannot nurture or protect your offspring. Worse still, sleep leaves you vulnerable to predation. Sleep is surely one of the most puzzling of all human behaviors.

On any one of these grounds—never mind all of them in combination—there ought to have been a strong evolutionary pressure to prevent the emergence of sleep or anything remotely like it…


Walker, Matthew (2017-10-02T23:58:59). Why We Sleep: Unlocking the Power of Sleep and Dreams (Kindle Locations 69-122). Scribner. Kindle Edition.
A great read thus far. Only just getting underway.

Matthew Walker on the morning news:


Cool.

What about sleep-deprived clinicians?
SLEEP AND HEALTH CARE

If you are about to receive medical treatment at a hospital, you’d be well advised to ask the doctor: “How much sleep have you had in the past twenty-four hours?” The doctor’s response will determine, to a statistically provable degree, whether the treatment you receive will result in a serious medical error, or even death. All of us know that nurses and doctors work long, consecutive hours, and none more so than doctors during their resident training years. Few people, however, know why. Why did we ever force doctors to learn their profession in this exhausting, sleepless way? The answer originates with the esteemed physician William Stewart Halsted, MD, who was also a helpless drug addict.

Halsted founded the surgical training program at Johns Hopkins Hospital in Baltimore, Maryland, in May 1889. As chief of the Department of Surgery, his influence was considerable, and his beliefs about how young doctors must apply themselves to medicine, formidable. There was to be a six-year residency, quite literally. The term “residency” came from Halsted’s belief that doctors must live in the hospital for much of their training, allowing them to be truly committed in their learning of surgical skills and medical knowledge. Fledgling residents had to suffer long, consecutive work shifts, day and night. To Halsted, sleep was a dispensable luxury that detracted from the ability to work and learn. Halsted’s mentality was difficult to argue with, since he himself practiced what he preached, being renowned for a seemingly superhuman ability to stay awake for apparently days on end without any fatigue.

But Halsted had a dirty secret that only came to light years after his death, and helped explain both the maniacal structure of his residency program and his ability to forgo sleep. Halsted was a cocaine addict. It was a sad and apparently accidental habit, one that started years before his arrival at Johns Hopkins.

Early in his career, Halsted was conducting research on the nerve-blocking abilities of drugs that could be used as anesthetics to dull pain in surgical procedures. One of those drugs was cocaine, which prevents electrical impulse waves from shooting down the length of the nerves in the body, including those that transmit pain. Addicts of the drug know this all too well, as their nose, and often their entire face, will become numb after snorting several lines of the substance, almost like having been injected with too much anesthetic by an overly enthusiastic dentist…

Halsted inserted his cocaine-infused wakefulness into the heart of Johns Hopkins’s surgical program, imposing a similarly unrealistic mentality of sleeplessness upon his residents for the duration of their training. The exhausting residency program, which persists in one form or another throughout all US medical schools to this day, has left countless patients hurt or dead in its wake—and likely residents, too. That may sound like an unfair charge to level considering the wonderful, lifesaving work our committed and caring young doctors and medical staff perform, but it is a provable one.
[Walker, op cit pp. 316 - 318]
Wow. I still vividly recall the zombie-shuffling senior Resident assigned to Sissy's case in 1996 at L.A. County / USC Hospital, as he endured 30+ hour continuous shifts. That vestigial "Iron Man" MedEd syndrome still prevails to a great extent in clinical residency.

NOTE

There will likely be relevant triangulation with two other books I've cited before.


"Evolutionary mismatch" stuff.

DTC SLEEP ASSISTANCE TECH?

No shortage of apps out there these days.

Click to enlarge for full-size image

How much of this is "for entertainment purposes only" remains a concern. I hope to find some good vetting in Dr. Walker's book.

Googling "smartphone sleep apps" readily turns up a good bit of stuff. e.g.,
Overview of smartphone applications for sleep analysis

Abstract


Objective
To review and assess the current selection of sleep analysis smartphone applications (apps) available for download.


Methods
The iOS and Google Play mobile app store were searched for sleep analysis apps targeted for consumer use. Alarm clock, sleep-aid, snoring and sleep-talking recorder, fitness tracker apps, and apps geared towards health professionals were excluded. App information and features were obtained from in-store descriptions, and the app developer website.


Results
A total of 51 unique sleep apps in both iOS and Google Play stores were included. The apps were rated 3.8/5 in both stores, and had an average price of $1.12 in the iOS store and $0.58 in the Google Play store. >65% of sleep apps report on sleep structure, including duration, time awake, and time in light/deep sleep, while reporting of REM was limited. The availability of extra features was variable, ranging from 4% to 73% of apps.


Conclusions
There are a variety of sleep analysis apps with a range of functionality. The apps with the most reviews from the each store are featured. Many apps provide data on sleep structure; however the algorithms are not validated by scientific literature or studies. Since patients may inquire about their sleep habits from these apps, it is necessary for physicians to be aware of the most common apps and the features offered and their limitations in order to properly counsel patients.
Interesting. Have to wonder about the study design utility there.

In general, I can just hear the docs griping about "yet more patient-generated data" expected to be reviewed and considered.

DR. WALKER ON SLEEP APPS

One practice known to convert a healthy new habit into a permanent way of life is exposure to your own data. Research in cardiovascular disease is a good example. If patients are given tools that can be used at home to track their improving physiological health in response to an exercise plan—such as blood pressure monitors during exercise programs, scales that log body mass index during dieting efforts, or spirometry devices that register respiratory lung capacity during attempted smoking cessation—compliance rates with rehabilitation programs increase. Follow up with those same individuals after a year or even five, and more of them have maintained their positive change in lifestyle and behavior as a consequence. When it comes to the quantified self, it’s the old adage of “seeing is believing” that ensures longer-term adherence to healthy habits.

With wearables that accurately track our slumber fast emerging, we can apply this same approach to sleep. Harnessing smartphones as a central hub to gather an individual’s health data from various sources—physical activity (such as number of steps or minutes and intensity of exercise), light exposure, temperature, heart rate, body weight, food intake, work productivity, or mood—we show each individual how their own sleep is a direct predictor of their own physical and mental health. It’s likely that, if you wore such a device, you would find out that on the nights you slept more you ate less food the next day, and of a healthy kind; felt brighter, happier, and more positive; had better relationship interactions; and accomplished more in less time at work. Moreover, you would discover that during months of the year when you were averaging more sleep, you were sick less; your weight, blood pressure, and medication use were all lower; and your relationship or marriage satisfaction, as well as sex life, were better.

Reinforced day after day, month after month, and ultimately year after year, this nudge could change many people’s sleep neglect for the better. I’m not so naïve to think it would be a radical change, but if this increased your sleep amount by just fifteen to twenty minutes each night, the science indicates that it would make a significant difference across the life span and save trillions of dollars within the global economy at the population level, to name but two benefits. It could be one of the most powerful factors in a future vision that shifts from a model of sick care (treatment), which is what we do now, to health care (prevention)—the latter aiming to stave off a need for the former. Prevention is far more efficient than treatment, and costs far less in the long run.

Going even further, what if we moved from a stance of analytics (i.e., here is your past and/or current sleep and here is your past and/or current body weight) to that of forward-looking predictalytics? To explain the term, let me go back to the smoking example. There are efforts to create predictalytics apps that start with you taking a picture of your own face with the camera of your smartphone. The app then asks you how many cigarettes you smoke on average a day. Based on scientific data that understand how smoking quantity impacts outward health features such as bags under your eyes, wrinkles, psoriasis, thinning hair, and yellowed teeth, the app predictively modifies your face on the assumption of your continued smoking, and does so at different future time points: one year, two years, five years, ten years.

The very same approach could be adopted for sleep, but at many different levels: outward appearance as well as inward brain and body health. For example, we could show individuals their increasing risk (albeit non-deterministic) of conditions such as Alzheimer’s disease or certain cancers if they continue sleeping too little. Men could see projections on how much their testicles will shrink or their testosterone level will drop should their sleep neglect continue. Similar risk predictions could be made for gains in body weight, diabetes, or immune impairment and infection.

Another example involves offering individuals a prediction of when they should or should not get their flu shot based on sleep amount in the week prior. You will recall from chapter 8 that getting four to six hours of sleep a night in the week before your flu shot means that you will produce less than half of the normal antibody response required, while seven or more hours of sleep consistently returns a powerful and comprehensive immunization response. The goal would be to unite health-care providers and hospitals with real-time updates on an individual’s sleep, week to week. Through notifications, the software will identify the optimal time for when an individual should get their flu shot to maximize vaccination success.

Not only will this markedly improve an individual’s immunity but also that of the community, through developing more effective “herd immune benefits.” Few people realize that the annual financial cost of the flu in the US is around $100 billion ($10 billion direct and $90 billion in lost work productivity). Even if this software solution decreases flu infection rates by just a small percentage, it will save hundreds of millions of dollars by way of improved immunization efficiency by reducing the cost burden on hospital services, both the inpatient and outpatient service utilization…
[Walker, op cit, pp. 329-331]
__

UPDATE

Surfing about and ran across some other topical research.

Our laboratories focus on two neurobiological problems: the mechanisms and functions of sleep, and the neural substrates of consciousness. Both problems have considerable medical implications, especially for psychiatric disorders such as depression and schizophrenia.

Research Overview
Mechanisms and functions of sleep


Sleep is a pervasive and universal behavior: it occupies a third of our life, and is present in every animal species that has been studied. It is also a fundamental behavior: even partial deprivation of sleep has serious consequences on cognition, mood, and health. All available evidence indicates that the brain needs sleep to function properly, but why this is the case remains unclear.

Our work has been informed by the conviction that the key to sleep is to be found at the intersection between the cellular and the systems level. This is why our laboratories use a combination of different approaches (from fly genetics to computer simulations) to try to understand the purpose of sleep.

The molecular/genetic approach to studying sleep includes genome-wide expression profiling in flies and rodents, with the aim to identify those genes whose expression changes in the brain in sleep relative to spontaneous wakefulness and sleep deprivation. This approach also exploits the power of Drosophila genetics. Fruit flies sleep and need sleep in much the same way that we and other mammals do. This finding has opened the way to the genetic dissection of sleep using mutant screening to identify flies that need little sleep and/or are resistant to the effects of sleep deprivation.

The efforts of many years have converged on a new hypothesis about the functions of sleep—the synaptic homeostasis hypothesis, which claims that that sleep maintains synaptic homeostasis. In essence, sleep is the price we have to pay for plasticity, and its function would be the homeostatic regulation of the total synaptic weight impinging on neurons (Tononi and Cirelli, 2003, 2006).

Neural substrates of consciousness
Understanding how brain activity gives rise to conscious experience has important implications for neuroscience, psychology, and psychiatry. Dr. Tononi has worked on this problem since the beginning of his scientific career (it was the topic of his MD dissertation) and he and his laboratory have approached consciousness in several complementary ways.

Consciousness poses two main problems. The first is understanding the conditions that determine to what extent a system has conscious experience. For instance, why do certain parts of the brain, such as the thalamocortical system, contribute directly to consciousness, and other parts, such as the cerebellum, do not? And why are we conscious during wakefulness and much less so during dreamless sleep? The second problem is understanding the conditions that determine what kind of consciousness a system has. For example, why do specific parts of the brain contribute specific qualities to our conscious experience, such as vision and audition?

To understand what consciousness is at the fundamental level, how it can be measured in a principled manner, and how and why certain parts of the brain are capable of generating it, a theoretical approach is required. The information integration theory of consciousness constitutes such an approach (Tononi, 2004)…

A bit outside the scope of my interest here. Interesting nonetheless. If you wish to ramble further afield on this riff, see this post by John Horgan.

BTW

Dr. Walker's website (independent of UC Berkeley):


Lots of cool stuff there.

UPDATE, O/T ERRATUM

Lordy. I'm never gonna get caught up on my reading.


A post on this book now up at Science Based Medicine caught my eye.
Conclusion: lots of good stuff
This book is a tour-de-force, a compendium of vital information about science, especially as it pertains to current topics in the media, and about the forces that conspire against science. We all need to know about these things. We ignore them at our peril. The book is an excellent antidote to fake news and a handy reference. It’s not easy going, but it’s well worth the effort.
_____________

More to come...

No comments:

Post a Comment